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ABSTRACT ,I 

The transient behavior of the simple model of moist convection devised by Asai is studied. It is shown that the 
initial behavior of convective disturbances depends strongly upon the geometry of the disturbance, its initial buoy- 
ancy, and dissipative mechanisms. Final approach to a steady convective cell is dependent upon the relative impor- 
tance of entrainment of heat and momentum. These conclusions derived mainly from linear analysis are substantiated 
by a series of numerical experiments exhibiting the full nonlinear behavior of the system from formative stages to 
the final steady-state cell. 

1. INTRODUCTION Section 2 outlines the assumrhions and definitions which 

Convection in the earth’s atmosphere occurs in many 
modes of varying complexity. Both dry and moist con- 
vec tive processes involve multiple scales of motion inter- 
acting among themselves. Frequently in such systems, it 
is difficult to identify the basic elements of the process. 
A possible exception is moist convection, in which the 
cloud mass may sometimes retain its identity for a rela- 
tively long time. I n  such a situation, it seems reasonable 
to parameterize the influence of the small-scale fluctua- 
tions on the macroelement by some form of mixing length 
theory. Unfortunately, the resulting system of governing 
equations resists easy mathematical analysis because of 
the inherent nonlinearities : the macroscale adyection and 
microscale mixing processes are typically quadratic in 
form, while the latent heat release is a discontinuous 
function of the disturbance state. 

I n  view of this complexity, a straightforward approach is 
to numerically solve an approximate finite-difference ver- 
sion of the complete governing equations. Such an ap- 
proach was used by Ogura (1963), who studied the develop- 
ment of an axially symmetric moist convective cell 
toward the steady state. 

An expedient alternative to a complex model is to 
study a simplified model in the hope of gaining insight 
into one or more basic features of the physical system. 
For example, Saltzman (1962) used a highly truncated 
spectral model to study the growth characteristics and 
steady heat transfer in dry convection. Kuo (1962) found 
that a nonlinear formulation of the mixing processes 
played an important role in adjustihg unstable disturb- 
ances to a steady state of finite-amplitude convection. 

A particularly simple model of moist convection with 
nonlinear mixing was devised by Asai (1967) and subse- 
quently analyzed to determine the iduence of cell 
geometry upon steady heat transport. The present paper 
is an attempt to complement Asai’s study by considering 
the dynamics of the convection cell as it evolves toward 
its steady form-a number of questions present themselves. 
Which initial disturbances approach a final state of cellular 
convection? For those which do grow, do the fields of 
motion and temperature develop a t  the same rate? Do 
these rates vary as the disturbance amplitude changes? 

comprise the convection model. I n  section 3, the relations 
between model parameters, initial growth rates, and steady 
heat flux are investigated. Linear analysis of the equations 
is used in section 4 to predict the basic transient behavior 
for initial and final stages. Finally, numerical solutions of 
the nonlinear equations are presented in section 5 for 
various initial conditions and entrainment models. 

4. THE MODEL 

The geometry of Asai’s convection model and the chief 
variables and constants are shown in figure 1 and the 
following list of pertinent symbols: 

radial coordinate, 
vertical coordinate, 
radial velocity, 
vertical velocity, 
radius of updraft, 
total radius of cell, 
thickness of layer of inward motion, 
total thickness of cell, 
acceleration due to gravity, 
mean potential temperature a t  rest, 
potential temperature, 
equivalent potential temperature, 
a/b 1 

Cld, 
aa, radial mixing length (a>O), 
ad/2, vertical mixing length, 
- aee/az averaged along axis, 
aB/az averaged along axis, 
sa/s bt 

r- l n a  /a\21 
L 1 - m  (2) J 
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FIGURE 1.-Principal geometrical features of Asai's model of 
symmetric convection. The vector meridional wind and its 
components are denoted by m o w s  in each subregion. The 
cloudy region is assumed to be r<a. 

Asai's basic assumptions are as follows: 
1) The atmosphere is unstable for moist ascending 

motion (s,>O) and stable for dry descending motion 
(8 b > O ) .  

2) Motion is two-dimensional and cylindrical. 
3) All diabatic heating is due to  condensation, and 

evaporation is negligible in the descending current. 
4) The total height of the cylinder is much smaller 

than the atmospheric scale height, so that density varia- 
tions may be disregarded. 

5 )  U<O, au/az=o for O<Z<C; U>O, au/az=o for 
c<z ld ;  w>Q, h / a r = o  for Olr<a; w<O, aw/ar=O 
for a<r<b. 

6) t9 increases with height, but a t  each level assumes 
separate constant values in the ascending and descending 
regions. 

7) No motion or transport of properties occurs normal 
to a boundary. 

8) A mixing length hypothesis is assumed for eddy 
transport of heat and momentum as indicated in the list 
of symbols. 

By integrating the thermodynamic equation and the 
vorticity equation and simplifying the resulting expres- 
sions with the help of his assumptions, Asai obtains two 
ordinary nonlinear differential equations relating the 
velocity of the updraft t o  the potential temperature 
difference between the updraft and the surrounding down 
draft : 

(1) "'* -- - k3W*-k,A6*W* 
dt* 

and 
2 

dw*-k,k3*-k,W* -- 
at* 

At?* represents the potential temperature Merence, aver- 
aged both horizontally and vertically, and W* represents 
the updraft velocity averaged in the same way; t' is 
time. The quantities are starred to emphasize that they 
are dimensional, in contrast to nondimensionalized quan- 
tities which will be defined later. From the list of symbols 
in section 2, it is apparent that the parameters k,, k,, k S ,  
and k4 depend strongly upon cell geometry. Apart from 
this, it should be noted that kl and the first term in ka 
are proportional to  gravity and the degree of conditional 
instability, respectively, while k2 and k4 are directly pro- 
portional to the entrainment coefficient d. In  equations 
(1) and (2), k, represents thermal buoyancy, and k3 repre- 
sents the release of latent heat due t o  upward motion. 
The parameters k ,  and kq, arising from Asai's nonlinear 
mixing length theory, symbolize the dissipation (via 
entrainment) of vertical momentum and heat, respectively. 

Equations (1) and (2) are identical in form to equations 
(10) from the article by Kuo (1962) referred to earlier. 
His convection model is similar to Asai's, except that an 
absolutely unstable lapse rate is assumed and moisture is 
not considered. In  particular, a nonlinear mixing length 
theory is adopted. The quantities A and B correspond to 
W* and Ae*; Euo's parameters kl, k2., I , ,  and l2 correspond 
to Asai's parameters kl ,  kz ,  ka,  and k,  in that Qrder. 

3. IMPORTANCE OF CELL STRUCTURE 
AND ENTRAINMENT 

Equations (1) and (2) can be linearized by perturbing 
about a state of rest 

N*=w"+W*', (4) 

z=w-=o, (5) 

and neglecting products of perturbation terms. The fol- 
lowing equations result: 

and 
dW*' -- dt* -klAO*'. 

When kt is positive, as is assumed throughout, equations 
(6) and (7) have solutions which are linear combinations 
of eKt* and e-R1*, where 

K = G .  (8) 

The e-folding time, the length of time in which the ampli- 
fying component eRc* grows by a factor of e,  is defined by 

7*=1/&. (9) 
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Figures 2A and 2B exhibit the dependence of r* upon 
the shape of the convective cylinder and upon the con- 
ditional instability. As in Asai's article, the thickness of 
the inflow layer is taken to be half the total thickness 
to  maximize steady-state upward heat transport with 
respect to p .  A mean potential temperature of 300°K is 
taken as a reasonable value. The fraction of the area 
covered by ascending motion is limited by the require- 
ment that k, be positive for exponential growth of small 
perturbations. From Asai's definition of I C 3 ,  the cutoff 
value of uC of u is 
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The solid curves which are nearly horizontal for small u 
are isolines of 1 / ~ *  (l/min). As u approaches u,, the 
e-folding time tends to infinity since k3 approaches zero. 
It is apparent that the greater the instability (the larger 
a), the faster the growth of small perturbations from rest 
while linear theory applies. 

The dashed contours in figures 2A and 2B are isolines 
of a quantity H ("C cm/sec) directly proportional to the 
steady-state upward heat transport and defined in the 
list of symbols. Also plotted are the loci of maxima of 
1/r* and H with respect to  u for a wide range of a/d. 
Figure 2B indicates that for an updraft with large con- 
ditional instability and a horizontal scale comparable to  
or larger than its vertical scale, the value of u which 
maximizes the growth rate of small initial perturbations 
differs by only a few percent Prom the value which maxi- 
mizes the steady-state heat transport, and both these 
values are nearly independent of a/d. If the instability 
is small as in figure 2A, the critical values of u are still 
virtually independent of a/d, but the correlation between 
rapid early growth and large steady-state heat transport 
is much weaker. I n  narrow updrafts, no such correlation 
is evident. 

The e-folding time is independent of the entrainment 
strength, but upward heat transport is not. Effects due to 
varying the entrainment cannot be seen in figure 2, since 
a2 is 0.1 in both cases shown. However, if a2 is increased to 
1.0, H becomes an order of magnitude smaller, and the 
maximizing value of ald increases by about 40 percent. 

Under a wide variety of initial conditions (with certain 
restrictions to be described later), AB* and W* tend 
asymptotically to  the nonzero steady-state values obtained 
formally by setting dAtI*/dt and dW*/dt equal to zero in 
equations (1) and (2), namely 

and 

The variation of these values with entrainment intensity, 
stability, and cell shape for a total thickness of 1 km is 
demonstrated in tables 1A through ID. The same assump- 

I I I I I 
.IO .I2 .I4 .I6 .I8 .20 2 2  .24 .26 .28 

6 = 1.0 7'Qt Q-~=0.?07 I i  

3.0 - 

1.5 - 

.IO .20 .25 .30 .35 .40 .45 .50.55 .60 .65 

0- 

FIGURE 2.-Isolines of H (dashed contours) and 1/7* (solid con- 
tours) as functions of u and a/d ,  as explained in the text; s b =  

3.S°C/km; (A)6=0.1; (B) 6= 1.0. 

tions are made as in figures 2A and 2B. Cases (A) and (B) 
correspond to weak entrainment (aZ=O.l), with weak 
instability (6=0.1) and strong instability (6=1.0), re- 
spectively. Cases (C) and (D) represent strong entrain- 
ment (a2= 1 . O ) ,  again with weak and strong instability 
in thRt order. In  all cases, the steady-state potential 
temperature difference At?,*, increases with decreasing u 
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d=0.1,6=0.1 

0. os2 0.122 0.183 0.273 

d=0.1, 6.: 1.0 

0.082 0.159 0.309 0.599 

11.59 

2 86 

(A) 1.00 

0.350 

0.086 

11.59 

2.86 

(B) 1.W 

0.350 

0. CM 

0.17 0.16 0.12 0.03 

0.17 0.15 0.12 0.03 

0.16 0.15 0.11 0.03 

0.14 0.12 0.09 0.03 

0.08 0.07 0.05 0.02 

11.6 8.7 6.2 2.8 

93.0 70.0 49.5 22.3 

331.3 270.4 201.1 92.6 

274.4 255.7 214.4 106.5 

106.1 99.3 83.5 41.4 

a*=1.0,8=0.1 

a/d \ I  0.082 0.122 0.183 0.273 

11.69 

286 

(C)  1.00 

0.360 

0.086 

0.16 0.15 0.11 0.03 
3.5 2.7 1.9 0.8 
0.13 0.12 0.09 0.03 
25.7 19.3 13.7 6.1 
0.09 0.08 0.06 0.02 
77.6 63.2 46.8 21.4 
0.05 0.04 0.03 0.01 

60.0 46.5 38.8 19.1 
0.01 0.01 0.01 0.00 
13.9 13.0 10.9 5.3 

1.86 1.79 1.53 0.53 

1.82 1.75 1.48 0.51 

1.71 1.64 1.39 0.46 

1.46 1.40 1.17 0.37 

0.87 0.83 0.68 0.19 

37.9 25.6 17.7 a7 

303.5 205.4 141.8 69.5 

1081.6 822.5 590.9 261.3 

895.6 843.9 685.1 233.3 

346.3 3285 265.6 M 3  

d = l . O ,  6=1.0 

0.082 0.169 0.309 0.599 

11.69 

2.86 

(D) 1.00 

0.350 

0.086 

1.73 1.68 1.41 0.47 

1.39 1.33 1.11 0.35 

0.94 0.89 0.73 0.21 

0.48 0.46 0.37 0.10 

0.15 0.14 0. 11 0.03 

11.5 7.8 5.4 2.6 

' 84.0 56.7 38.8 18.1 

253.3 191.9 135.7 56.5 

163.2 153.1 121.9 38.0 

45.3 42.8 34.1 10.2 

and increasing aid, so that very broad cells have the 
strongest thermal development. 

The variation of steady-state updraft velocity W& is 
markedly different in character, as those cells for which 
u is small but a is of the order of d have the strongest 
updrafts. As would be expected qualitatively from con- 
tinuity arguments, the upward motion decreases with 
increasing u since the affected area takes up more of the 
cell. The updraft velocity falls off relatively rapidly as 
a is made larger than d, but relatively slowly as a is made 
smaller than d. 

These patterns indicate that in updrafts of comparable 
horizontal and vertical scale, thermal and kinematic 
effects are of comparable importance. Predominantly 
vertical circulations release little heat of condensation in 
spite of moderate updraft velocities, while predominantly 
horizontal circulations release the most heat despite 
small upward velocities. 

Tables 1A and 1B, and likewise tables 1C and lD, 
are not fully comparable since U, is 0.707 for 6=1.0 but 
only 0.302 for 6=0.1, resulting in considerably different 
ranges of admissible values for U .  If u is substantially 
below 0.3, the tenfold increase in the stability ratio 
results in' an increase of At?,', by one order of magnitude or 
slightly more over the tabulated range of aid, while W& 
increases by close to half an order of magnitude. There 
fore, in Asai's model, the released latent heat in the 
updraft increases somewhat more strongly with the in- 
stability than does the upward motion. 

Tables 1A and IC, and similarly tables 1B and lD, 
are completely comparable since each separate pair of 
tables assumes the same value of 6 and hence the same 
value of u,. Both comparisons show that the thermal 
development decreases drastically with increasing en- 

trainment in narrow updrafts, but by only a few percent 
in wide updrafts. When c2 is increased from 0.1 to l .O l  
W& drops by nearly a full order of magnitude in narrow 
updrafts and by about half an order of magnitude in 
wide ones. lncreasing the entrainment intensity in narrow 
updrafts reduces both the thermal and kinetic develop- 
ment drastically, while in wide updrafts the kinematic 
development is damped by a factor of 3 with only a 
slight decrease in the thermal development. 

4. THEORETICAL PREDICTIONS 
The preceding tables have provided an idea of the vari- 

ations of growth rates of small initial perturbations about 
a rest state, and of the actual steady-state temperature 
difference and updraft velocity in Asai's convection cell 
for various geometric proportions, entrainment intensities, 
and stability ratios. It is also instructive to study the 
effect of initial conditions upon the manner of approach 
to  the steady state (in admissible cases). If dimensionless 
potential temperature difference] updraft velocity, and 
time are defined by 

At? = Ahe*lAt?*,,, (13) 

and 

then the steady-state values of both At? and W are unity. 
The nondimensionalized forms of equations (1) and (2) are 

and 
Z=R(AO-W') dt 
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where R is a number which depends only upon the &sip&- TABLE 2.-Dimensionless parameter R in Asai model as a function 
of u and a/d, with ~'0.6 

tive parameters kz and k4: 

R = w 4 .  (18) 

Equations (16) and (17) indicate that the growth rates 
of updraft velocity and potential temperature difference 
behave inversely with respect to the parameter R. For 
large values of R, thermal development lags behind kine- 
matic development. In  view of the physical meanings of 
kz and k4, one would expect this inverse relation. Large 
values of R imply that entrainment dissipates momentum 
more effectively than it dissipates heat, so that the up- 
ward motion approaches the steady state faster than the 
potential temperature difference does. If R is small, the 
situation is reversed. 

The quantity R does not depend explicitly on the sta- 
bility ratio, since k3 is the only one of the four parameters 
in equations (1) and (2) involving 6. However, kz and kc 
depend on a/d and u, and the larger the value of 6, the 
greater the cutoff value uc. It is, therefore, instructive to 
investigate the behavior of R with regard to  cell geometry, 
en trainmen t, and stability. 

Table 2 displays the variation of R as a function of u 
and a/d for weak, moderate, and strong entrainment as 
indicated. Again p is assumed to be 0.5 while 6 is unspeci- 
fied in order to make the three subtables fully comparable. 
Since R depends on entrainment intensity as well as on 
cell geometry, any rigid or complete classification of con- 
vection modes in terms of R is dficult. Certain tendencies 
may be inferred, nevertheless, from the definition of R and 
a comparison of table 2 with table 1 and figure 2 :  

1) Values of R much below one are favored by weak en- 
trainment, radius-to-height ratios of order unity, high 
updraft speed, and large areas of descending motion. Dis- 
sipation of momentum is much less important than dis- 
sipation of heat (k2<<k4). 

2) Values of R substantially greater than one are favored 
by strong entrainment, large radius-to-height ratios 
(wide updrafts), and large values of u (and, in turn, large 
conditional instability). Small initial perturbations grow 
slowly and updraft velocities are low, as might be expected 
since dissipation of momentum is considerably more 
important that dissipation of heat (kz>k4). 

3) Apart from transitional modes between those de- 
scribed in l) and 2 ) ,  values of R slighdy below one occur in 
plumelike updrafts (those which are much narrower than 
they are tall). The magnitudes of 2, 6, and 6 are of little 
importance. Small initial perturbations grow rapidly, 
although the steady-state rising motion is only weak to 
moderate. Dissipation of momentum and of heat are of 
nearly equal importance (k2=k4). 

4) R increases with d for each tabulated combination 
of u and a/&. Therefore, momentum dissipation becomes 
more important relative to  that of heat as the strength of 
entrainment is increased. 

A more detailed knowledge of the dependence of the 
growth rates on R can be obtained from linear analysis. 
Let us now examine the behavior of the nondimensional 

11.59 
2.86 
1.00 
0.350 
0.086 
0.021 

11.59 
2.86 
1.00 
0.350 
0.086 
0.021 

7 
11.59 
2.86 
1.00 
0.350 
0.086 
0.021 

0.086 0.157 0.333 0.607 

0.41 0.65 1. OB 1.29 
0. m 0.32 0.51 0.62 
0.14 0.20 0.30 0.36 
0.32 0.35 0.41 0.51 
0.71 0.72 0.74 0.80 
0.91 0.91 0.92 0.94 

d = O .  4 

0.086 0. 157 0.333 0.607 

0.81 1.28 2.08 2.54 
0.38 0.60 0.97 1. 14 
0.25 0.36 0.53 0.61 
0.50 0. 54 0.62 0.73 
0.88 0.88 0.90 0.93 
0.97 0.97 0.98 0.98 

a2=1.0 

0.086 0.157 0,333 0.607 

1.25 1.97 3.21 3.87 
0.55 0.87 1.40 1.60 
0.34 0.47 0.69 0.76 
0. 59 0.64 0.72 0.82 
0.93 0.94 0.95 0.97 
0.99 0.99 0.99 0.99 

variables A0 and W in the vicinity of the steady states 
of rest (AO= w= 0) and cellular convection (At)= w= 1). 
After considering first perturbations AO' and W' about 
the state of rest, the linearized equations 

d 1 - (AO')=-W' dt R 
and 

-- ' -&e' 
dt 

together with initial perturbation states Aeh and 
the solutions 

give 

Interestingly, certain initial states exclude the un- 
stable growth generally implied by the first term on the 
right-hand side of equation (21 ) .  For example, when the 
buoyancy has the negative value A&= (-l/IZ)W& the 
solutions are simply decaying perturbations toward state 
of rest: 

(When R = l ,  it  can be readily verified that a similar 
decay is followed even in the case of finite perturbations 
in the nonlinear stages.) 
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steady value). When R>>@/2, the fields of motion and 
temperature slowly approach the steady state together: 

If the initial buoyancy is even more negative 
(A86<- Wh/R), the in-cloud upward motion decreases 
to zero in a time equal to 

Subsequent times correspond to downward motion in the 
cloud (Wf<O), in which case the assumption of pseudo- 
adiabatic motions in the cloudy region is not physically 
realistic. It then appears that steady convection can never 
develop from a sufficiently unfavorable thermal field 
he;<- (l/B)W;. 

When the initial state exhibits positive buoyancy, the 
final state would always appear to be one of steady, 
finite amplitude convection. This is especially suggested 
in the case AO/,=W;/R when only the amplifying per- 
turbation is present: 

When ta,ken together, these two sets of linear results 
suggest interesting differences in the evolution of convec- 
tion cells for different values of R. For example, when 
R<< 1, small perturbations rapidly develop their steady 
thermal state, followed by a slower approach of the field 
of motion to its final form. When R>>1, the W field 
develops quickly, after which W and A8 evolve together 
to the mature state. 

Finally, when R=1 and with initial positive buoyancy 
AO'o=W', we have the linear results: 

ABf =Atlief 

W' =WAef 
and 

($l)=A0: (A) e'. (23) 

which conceivably lead to 
As all such unstable disturbances grow toward the final 

state, the nonlinear dissipative terms play a relatively 
more important role, and the above linear equations do 
not hold. To understand the approach to steady con- 
vection from any nearby state of motion, let us now 

and 

A h  
when AOo=Wo<O, suggesting that W and A0 grow together 
at  the same rate. This may be versed for the full non- 
linear equations in the special case where W=AO for all 
time. The governing equations then reduce to 

A A 
consider the perturbations A0 and W 
state A 0 = W = 1 .  They are governed 
equations 

about the steady 
by the linearized 

d A 1 ' 1  8 (A8)=-- A8 R (24) 
and 

d h  A A  3 (W>=R(A8-.22W) (25) which gives the solution 

whose solutions for R #@/2 are: 

This solution exhibits initial exponential growth of W 
and A0 together, followed by their transition to the final 
asymptotic approach to steady convection. 

5. NUMERKAL SOLUTIONS 
I n  the preceding section, linear theorywas used to predict 

the qualitative features of the initial and final stages of 
convection. Nonlinear results were obtained for a single, 
special case only. To extend the results in thenonlinear 
cases, we consider now the approximate solution of equa- 
tions (16) and (17) using the four-step Runge-Kutta 
scheme with time steps At=O.l.  The results are obtained 
for a variety of initial states in the AO-IV plane. 

In  the first four of the eight cases considered, the com- 
binations of ABo and Wo represent small perturbations from 
rest, lying on a circle of radius 0.1 in the A8-'Mr plane. I n  
the other combinations, large perturbations are repre- 
sented by placing the initial point on a circle of radius two, 
so that a t  least one of ABo and Wo is appreciably greater 
than the steady-state value of unity. The inner cylinder 

A A 
AO0 and Wo represent the initial perturbations. When 

R=45/2 the solutions become 

Since all perturbation modes are seen to decay, the steady 
convection cell is approached from nearly all states and 
for all values of R. When R<<&J2, I8 dies later than 
A8 (that is, the thermal field is the first to approach its 

A 
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of the cell is assumed to be initially colder than its sur- 
roundings in two cases so that the possibility of steady- 
state convection under such a condition may be explored. 
(In all cases, Wo is nonnegative since descending motion 
in the inner cylinder is not of physical interest.) The sets 
of initial conditions are as follows: 

Case AB0 
1 0.1000 
2 0. 0707 
3 0.0000 
4 -0. 0707 
5 2.0000 
6 1.4142 
7 0.0000 
8 -1.4142 

WO 
0.0000 
0. 0707 
0.1000 
0. 0707 
0.0000 
1.4142 
2.0000 
1.4142 

The results appear in figures 3-8 as plots of the solution 
in the phase plane. Figure 3 allows comparison of the solu- 
tion curves for various values of R. We see that the agree- 
mewt of the curves with the results predicted in section 4 
is good. 

Figures 4-8 show how the convection is affected by 
changes in R when the initial state is held fixed. The differ- 
ent rates of evolution are apparent from the isolines of 
time indicated in each figure. Cases 6-8 are not included 
in the figures, but the salient features of all cases will be 
noted below. 

I n  the first three cases, steady-state convection develops 
for the range of R considered (from 0.15 to  2.40). The 
thermal development is generally ahead of the kinematic 
development when R<1, and lags behind the kinematic 
development when R>1. As has been noted, values of R 
much below unity are associated mostly with very strong 
steady-state upward motion; the graphs show that such 
updrafts develop little of their speed until “thermal equili- 
brium” is nearly achieved. On the other hand, those up- 
drafts which attain only a low velocity have gained about 
two-thirds of their speed by the time the potential tem- 
perature gradient is half established. After some adjust- 
ment, the plumelike updrafts (R close to 1) approach the 
steady-state temperature excess and upward velocity 
practically in phase. In  case 2, where ABo= We, A8 and W 
remain equal for all time for R = l  as shown by equation 
(32). 

The early development of convection is markedly dif- 
ferent in cases 1 and 3. In  the first case, with a small 
temperature contrast but no vertical motion initially, 
the rate of change of temperature ’ddifference with t is 
nearly independent of R, while the updraft develops in 
proportion to R. In  case 3, with initial upward motion 
but no temperature contrast, the early acceleration of 
the updraft depends very little on R, but the temperature 
gradient is nearly proportional to R. This suggests that 
wide updrafts with small steady-state velocities (large R) 
develop more rapidly from small thermal perturbations 
than from a slight upward push; narrow updrafts with 
high velocities (small R) grow faster from a slight upward 
velocity than from thermal buoyancy. All the curves in 
case 3 are virtually horizontal for values of t under about 
0.5, indicating that the lack of an initial temperature 

excess temporarily inhibits vertical accelerations, as would 
be expected from buoyancy arguments. 

In  case 4, in contrast to the preceding three cases, the 
initial temperature contrast is negative and steady-state 
convection develops only if R<1. Updraft growth is 
increasingly inhibited for t smaller than about 2 as R is 
increased. It is clear that the initial temperature distri- 
bution tends to discourage upward motion in the inner 
cylinder due to negative buoyancy. The steady state is 
eventually approached provided R<1, but the updraft 
does not accelerate until the temperature gradient reverses, 
and shows an increasingly pronounced early deceleration as 
R approaches 1. 

The curve for R = l  is not shown since the scaling of the 
graph provides too little room to include isolines of t. For 
this value of R, the solutions to equations (17) and (18) 
become singular, and the rest state (AB=W=O) is ap- 
proached instead of the steady state (Ae=W=l). At  this 
point, the initial upward push cannot overcome the 
negative buoyancy, and the convection decays. It can 
be inferred that the plumelike updrafts, with R only 
slightly smaller than 1, are almost completely damped 
before reversing and approaching the steady state. Values 
of R larger than 1 correspond to physically meaningless 
solutions of the equations, since both A8 and W approach 
- m  for sufficiently large t. Since R increases with the 
entrainment coefficient a2, especially when a/d is large, 
the initial negative buoyancy in case 4 supports the 
development of steady-state convection only if the entrain- 
ment rate and updraft width are suitably limited. R also 
increases with u, so that the domain of descending motion 
must be large enough in comparison to the updraft for 
most of the kinetic energy to be confined to the upward 
motion according to the continuity requirement. 

In  cases 5 through 7, as in cases 1 through 3, the non- 
negative initial temperature difference supports the 
development of steady-state convection for the range of 
R considered (from 0.15 to 2.40). The temperature excess 
in case 5 is initially twice the steady-state value, but 
there is no vertical motion. For the three smallest values 
of R (0.15, 0.25, and 0.40), the steady state is approached 
monotonically. As R is further increased, however, the 
updraft exceeds its steady-state velocity for sufficiently 
large t. The overshoot becomes more pronounced as R 
increases. It may be inferred from tables 1 and 2 that if 
the updraft is much narrower or much broader than its 
depth, R will be large enough for this phenomenon to 
occur. The strong initial heating evidently creates 
sufficient buoyancy to accelerate the updraft from its 
initial rest state beyond its steady-state velocity. As R 
is increased, the points in the AB-W plane corresponding 
to the maximum of W move toward the right and generate 
an envelope. Since the time origin is immaterial, initial 
values of AB and W situated above this envelope would 
not be expected to  lead to the unstable acceleration just 
described. 

In  particular, the point AO= W= 1.4142, the initial 
point in case 6, lies above the envelope. The convection 
weakens monotonically with time toward the steady 
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FICVRE 3.-Sets of normalized convection solutions in the phase plane for various values of the parameter R. The state of steady cellular 

convection is denoted by a circle. The curves show the approach toward the steady state from various initial conditions represented 
by the free ends. 

state for all values of R in case 6. As in case 2, the potential 
temperature excess approaches the steady state earlier 
than the updraft velocity if R<1, and vice versa if R>1. 

In  case 7, there is no initial temperature gradient, but 
an updraft having twice the steady-state velocity is 
assumed. Below a critical value of R slightly less than 
0.70, the released heat of condensation creates enough 
upward buoyancy to prevent the current from decelerating 

below the steady-state velocity a t  any time. As R is 
augmented beyond the critical value, W increasingly 
undershoots the steady-state value. In  view of the rough 
inverse relationship between R and the actual steady- 
state velocity W&, large values of R correspond to weak 
currents which would not be expected to release heat 
rapidly. When the decelerating current passes its steady- 
state speed, the weakness of the upward buoyancy 



FIGURE 4.-Sets of normalized convection solutions in the phase 
plane for the initial flow state corresponding to case 1. The 
various solutions for different values of R are indicated, as are 
lines connecting equal intervals of time following the initial 
state. 
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FIGURE 6.-Convection solutions for case 3. 
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FIGURE 5.-Convection solutions for case 2. R=2.40, the undershoot already appears before the 
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FIGURE 7.-Convection solutions for case 4. 

together with inertia cause the deceleration to  persist. 
The plumelike updrafts have generated most of the 
temperature excess when this phenomenon appears, and 
the undershoot does not exceed about 10 percent. When 
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temperature difference has attained 15 percent of the 
steady-state value, and reaches close to 50 percent. 

Finally, in case 8 as in case 4, steady-state convection 
develops in the initially cold updraft only if R<1. For 
the two smallest values of R, associated with large steady- 
state velocities, the rapid release of latent heat brought 
about by the even faster initial updraft reverses the 
radial temperature field soon enough so that W remains 
greater than 1 at  all times. Beyond a critical value of R 
close to 0.40, an undershoot in W appears as the tempera- 
ture field reverses too slowly to counteract the inhibiting 
negative buoyancy. As R approaches unity, the under- 
shoot becomes more pronounced and appears earlier. 
When R=0.70, the phenomenon occurs while the updraft 
is still colder than the downdraft. As in case 4, the plume- 
like updrafts are almost completely damped out by the 
unfavorable temperature field before reversing toward 
the steady state; when R=1, AO=-W a t  all times. The 
initial negative buoyancy can no longer be overcome by 
the updraft, which decays toward the rest state. For the 
same reason stated in case 4, the solutions of equations 
(16) and (17) have no physical meaning if R is larger 
than 1. 

6. SUMMARY AND CONCLUSIONS 
In  Asai’s model of cellular cumulus convection, the 

early growth rate of small initial perturbations from rest 
increases with the degree of conditional instability and 
shows approximately direct variation with t.he steady-state 
upward heat transport if the horizontal scale of the updraft 
is comparable to or larger than its vertical scale. Plume- 

like updrafts within cells of small horizontal scale have the 
most rapid growth. 

For either small or large initial perturbations (relative 
to steady-state values), it appears that steady-state con- 
vection develops under any of the following initial 
conditions: 

1) temperature excess with no vertical motion, 
2) both upward motion and temperature excess, and 
3) upward motion with no temperature excess. 
Beyond the early growth states, the mode of approach 

toward steady state for small initial perturbations is nearly 
independent of the initial conditions for a given combina- 
tion of cell geometry, entrainment rate, and conditional 
instability. In  broad updrafts with low steady-state 
vertical velocities, the development of temperature excess 
lags behind the updraft development, while the opposite 
holds for narrow updrafts with high steady state velocities. 
When the horizontal and vertical scales of the updraft 
are markedly different, large initial heating without 
vertical motion creates suflicient buoyancy to accelerate 
the updraft temporarily beyond the steady-state speed. 
On the other hand, with no initial heating but upward 
motion faster than the steady-state, currents with low 
absolute velocities temporarily undershoot the equilibrium 
velocity due to the small thermal buoyancy. 

Initial upward motion with a negative temperature 
perturbation supports the development of steady-state 
convection provided the entrainment rate and updraft 
width (relative to  the total cell width) are sufficiently 
small. Horizontal mixing is then small, so that the latent 
heat release resulting from the initial upward push can 
overcome the negative buoyancy. If these conditions are 
not satisfied, there is either no physically meaningful 
convection, or singular damping to the rest state occurs. 
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